Будущее шинного производства: шины из сои, изопрена, дивинилстирола, млечного сока. “Michelin” из одуванчиков Резина из млечного

Алкадиены

ГЕВЕЯ БРАЗИЛЬСКАЯ

(Hevea brasiliensis )

Каучуконосы


Добытчик каучука, коагулирующий собранный латекс, сначала собирая его на палку, а затем удерживая ее над чаном с дымом


Переработка каучука на плантации в Восточном Камеруне

Каучуки - натуральные или синтетические материалы, характеризующиеся эластичностью, водонепроницаемостью и электроизоляционными свойствами, из которых путём специальной обработки получают резину. Природный каучук получают из жидкости молочно-белого цвета, называемой латексом , - млечного сока каучуконосных растений.

В технике из каучуков изготовляют шины для автотранспорта, самолётов, велосипедов; каучуки применяют для электроизоляции, а также производства промышленных товаров, медицинских приборов и латексних матрасов.

Химические свойства

1928 г.



Диеновые синтезы (реакция Дильса-Альдера)

Резина

Вулканизация каучука

Натуральные и синтетические каучуки используются преимущественно в виде резины, так как она обладает значительно более высокой прочностью, эластичностью и рядом других ценных свойств. Для получения резины каучук вулканизируют. Многие учёные работали над вулканизацией каучука.

В 1834 году немецкий химик Людерсдорф впервые обнаружил, что каучук можно сделать твёрдым после обработки его раствором серы в скипидаре.

Американский торговец Чарльз Гудьир был одним из неудачливых предпринимателей, который всю жизнь гнался за богатством. Он увлёкся резиновым делом и, оставаясь порой без гроша, настойчиво искал способ улучшить качество резиновых изделий. Гудьир открыл способ получения нелипкой, прочной и упругой резины путём смешения каучука с серой и нагревания.

В 1843 году Гэнкок, независимо от Гудьира, нашёл способ вулканизировать каучук погружением его в расплавленную серу, а несколько позднее Паркс открыл возможность получения резины обработкой каучука раствором полухлористой серы (холодная вулканизация ).

Англичанин Роберт Вильям Томсон, который в 1846 году изобрёл «патентованные воздушные колёса», и ирландский ветеринар Джон Бойд Денлоб, натянувший каучуковую трубку на колесо велосипеда своего маленького сына, и не подозревали, что тем самым положили начало применению каучука в шинной промышленности.

Современная технология резинового производства осуществляется по следующим этапам:

Из смеси каучука с серой, наполнителями (особенно важным наполнителем служит сажа) и другими веществами формуют нужные изделия и подвергают их нагреванию. При этих условиях атомы серы присоединяются к двойным связям макромолекул каучука и «сшивают» их, образуя дисульфидные «мостики». В результате образуется гигантская молекула, имеющая три измерения в пространстве - как бы длину, ширину и толщину. Полимер приобретает пространственную структуру:

Такой каучук (резина) будет, конечно, прочнее невулканизированного. Меняется и растворимость полимера: каучук, хотя и медленно, растворяется в бензине, резина лишь набухает в нём. Если к каучуку добавить больше серы, чем нужно для образования резины, то при вулканизации линейные молекулы окажутся «сшитыми» в очень многих местах, и материал утратит эластичность, станет твёрдым - получится эбонит . До появления современных пластмасс эбонит считался одним из лучших изоляторов.

Вулканизированный каучук имеет бoльшую прочность и эластичность, а также большую устойчивость к изменению температуры, чем невулканизированный каучук; резина непроницаема для газов, устойчива к царапанию, химическому воздействию, жаре и электричеству, а также показывает высокий коэффициент трения скольжения с сухими поверхностями и низкое - с увлажнёнными.

Ускорители вулканизации улучшают свойства вулканизаторов, сокращают время вулканизации и расход основного сырья, препятствуют перевулканизации. В качестве ускорителей используются неорганические соединения (оксид магния MgO, оксид свинца PbO и другие) и органические: дитиокарбаматы (производные дитиокарбаминовой кислоты), тиурамы (производные диметиламина), ксантогенаты (соли ксантогеновой кислоты) и другие.

Активаторы ускорителей вулканизации облегчают реакции взаимодействия всех компонентов резиновой смеси. В основном, в качестве активаторов применяют оксид цинка ZnO.

Антиокислители (стабилизаторы, противостарители) вводят в резиновую смесь для предупреждения «старения» каучука.

Наполнители - повышают физико-механические свойства резин: прочность, износостойкость, сопротивление истиранию. Они также способствуют увеличению объёма исходного сырья, а, следовательно, сокращают расход каучука и снижают стоимость резины. К наполнителям относятся различные типы саж (технический углерод), минеральные вещества (мел CaCO 3, BaSO 4, гипс CaO 2H 2O, тальк 3MgO 4SiO 2 2H 2O, кварцевый песок SiO 2).

Пластификаторы (мягчители) - вещества, которые улучшают технологические свойства резины, облегчают её обработку (понижают вязкость системы), обеспечивают возможность увеличения содержания наполнителей. Введение пластификаторов повышает динамическую выносливость резины, сопротивление «стиранию». В качестве пластификаторов используются продукты переработки нефти (мазут, гудрон, парафины), вещества растительного происхождения (канифоль), жирные кислоты (стеариновая, олеиновая) и другие.

Прочность и нерастворимость резины в органических растворителях связаны с её строением. Свойства резины определяются и типом исходного сырья. Например, резина из натурального каучука характеризуется хорошей эластичностью, маслостойкостью, износостойкостью, но в то же время мало устойчива к агрессивным средам; резина из каучука СКД имеет даже более высокую износостойкость, чем из НК. Бутадиенстирольный каучук СКС способствует повышению износостойкости. Изопреновый каучук СКИ определяет эластичность и прочность резины на растяжение, а хлоропреновый - стойкость её к действию кислорода.

В России первое крупное предприятие резиновой промышленности было основано в Петербурге в 1860 году, впоследствии названное «Треугольником» (с 1922 года - «Красный треугольник»). За ним были основаны и другие российские заводы резиновых изделий: «Каучук» и «Богатырь» в Москве, «Проводник» в Риге и другие.

Применение резины в промышленных товарах

Каучук имеет огромное народнохозяйственное значение. Чаще всего его используют не в чистом виде, а в виде резины. Резиновые изделия применяют в технике для изоляции проводов, изготовления различных шин, в военной промышленности, в производстве промышленных товаров: обуви, искусственной кожи, прорезиненной одежды, медицинских изделий…

Резина - высокоэластичное, прочное соединение, но менее пластичное, чем каучук. Она представляет собой сложную многокомпонентную систему, состоящую из полимерной основы (каучука) и различных добавок.

Наиболее крупными потребителями резиновых технических изделий являются автомобильная промышленность и сельскохозяйственное машиностроение. Степень насыщенности резиновыми изделиями - один из основных признаков совершенства, надёжности и комфортабельности массовых видов машиностроительной продукции. В составе механизмов и агрегатов современных автомобиля и трактора имеются сотни наименований и до тысячи штук резиновых деталей, причём одновременно с увеличением производства машин возрастает их резиноёмкость.

Виды резины и их применение

В зависимости от структуры резину делят на непористую (монолитную) и пористую.

Непористую резину изготовляют на основе бутадиенового каучука. Она отличается высоким сопротивлением истиранию. Срок износа подошвенной резины в 2-3 раза превышает срок износа подошвенной кожи. Предел прочности резины при растяжении меньше, чем натуральной кожи, но относительное удлинение при разрыве во много раз превышает удлинение натуральной подошвенной кожи. Резина не пропускает воду и практически в ней не набухает.

Резина уступает коже по морозостойкости и теплопроводности, что снижает теплозащитные свойства обуви. И наконец, резина является абсолютно воздухо- и паронепроницаемой. Непористая резина бывает подошвенная, кожеподобная, и транспарентная.

Обычную непористую резину применяют для изготовления формованных подошв, накладок, каблуков, полукаблуков, набоек и других деталей низа обуви.

Пористые резины применяют в качестве подошв и платформ для весенне-осенней и зимней обуви.

Кожеподобная резина - это резина для низа обуви, изготовленная на основе каучука с высоким содержанием стирола (до 85%). Повышенное содержание стирола придаёт резинам твёрдость, вследствие чего возможно снижение их толщины до 2,5-4,0 мм при сохранении хороших защитных функций.

Эксплуатационные свойства кожеподобной резины сходны со свойствами натуральной кожи. Она обладает высокой твёрдостью и пластичностью, что позволяет создавать след обуви любой формы. Кожеподобная резина хорошо окрашивается при отделке обуви. Она имеет высокую износостойкость благодаря хорошему сопротивлению истиранию и устойчивости к многократным изгибам. Срок носки обуви с подошвой из кожеподобной резины составляет 179-252 дня при отсутствии выкрошивания в носовой части.

Недостатком этой резины являются невысокие гигиенические свойства: высокая теплопроводность и отсутствие гигроскопичности и воздухонепроницаемости.

Кожеподобную резину выпускают трёх разновидностей: непористой структуры с плотностью 1,28 г/см 3, пористой структуры, имеющую плотность 0,8-0,95 г/см 3, и пористой структуры с волокнистым наполнителем, плотность которых не выше 1,15 г/см 3. Пористые резины с волокнистыми наполнителями называются «кожволон ». Эти резины по внешнему виду сходны с натуральной кожей. Благодаря волокнистому наполнителю повышаются их теплозащитные свойства, они отличаются лёгкостью, эластичностью, хорошим внешним видом. Кожеподобные резины применяют в качестве подошвы и каблука при изготовлении летней и весенне-осенней обуви клеевого метода крепления.

Транспарентная резина - это полупрозрачный материал с высоким содержанием натурального каучука. Отличается высоким сопротивлением истиранию и твёрдостью, по износостойкости превосходит все виды резин. Транспарентные резины выпускают в виде формованных подошв (вместе с каблуками), с глубоким рифлением на ходовой стороне.

Разновидостью транспорентной резины является стиронип , содержащий большее количество каучука. Сопротивление многократному изгибу у стиронипа в три с лишним раза выше, чем у обычных непористых резин. Стиронип применяется при изготовлении обуви клеевого метода крепления.

Резина пористой структуры имеет замкнутые поры, объём которых в зависимости от вида резины колеблется от 20 до 80 % её общего объёма. Эти резины имеют ряд преимуществ по сравнению с непористыми резинами: повышенные мягкость, гибкость, высокие амортизационные свойства, упругость.

Недостатком пористых резин является способность давать усадку, а также выкрошиваться в носочной части при ударах. Для повышения твёрдости пористых резин в их состав вводят полистирольные смолы.

В настоящее время освоено производство новых видов пористых резин: порокрепа и вулканита . Порокреп отличается красивым цветом, эластичностью, повышенной прочностью. Вулканит - пористая резина с волокнистыми наполнителями, обладающая высокой износостойкостью, хорошей теплозащитностью. Пористые резины применяют в качестве подошв для весенне-осенней и зимней обуви. Метод производства сырых резиновых заготовок в виде непрерывной ленты нужной толщины и ширины. Каландрирование улучшает физико-химические свойства резиновой смеси, от него зависит расход резиновых смесей и качество изделий.

"Хочешь жить – умей вертеться", — гласит народная мудрость. Пока цены на нефть стремительно растут и появляются всё новые разработки в области биотоплива, каучуковая промышленность тоже не дремлет, подыскивая для себя альтернативный источник для производства резины.

Учёные из исследовательских центров OARDC (Ohio Agricultural Research and Development Center) и OBIC (Ohio BioProducts Innovation Center) получили грант в размере $3 миллиона. В сотрудничестве с другими фирмами и университетами им предстоит создать проект перерабатывающего завода, который бы производил из млечного сока корней одуванчиков качественную резину за меньшие деньги.

Этот штат был выбран для подобного эксперимента неслучайно. В Огайо находится одно из крупнейших во всей стране производств изделий из резины (так уж исторически сложилось).

На данный момент дела с доступностью натурального каучука обстоят не лучшим образом. Ведь бразильская гевея (Hevea brasiliensis ) – основной коммерческий источник этого материала в мире — теперь произрастает в основном в Юго-Восточной Азии и Африке (болезнь уничтожила почти все растения в Южной Америке).

Так сложно представить, что кто-то в мире может намеренно выращивать одуванчики, да ещё и выделять под них огромные теплицы (фото Tom Dodge).

После Первой мировой войны во многих странах мира были предприняты попытки отыскать местные растения-каучуконосы. Тех, что содержали каучук и подобные ему соединения, оказалось достаточно много. Однако по разным причинам масштабных проектов по созданию производств на новом сырье так и не появилось.

В СССР также некоторое время резину получали из млечного сока одуванчиков, а именно из вида кок-сагыз (Taraxacum kok-saghyz ), признанного одним из лучших по своим показателям. «Коренной житель» Казахстана, в США более известный как «русский одуванчик», неплохо прижился и в лабораториях OARDC. Её сотрудники недавно ездили в наши края за очередной порцией образцов.

В отличие от одуванчика лекарственного (Taraxacum officinale ), кок-сагыз является куда более эффективным каучуконосом: в его корнях содержится 6-11% каучука (в корнях дикорастущих растений — до 27%). При этом по качеству он не уступает каучуку из гевеи, даже если растения не модифицированы и не отобраны.

Отличить «братьев» обычному человеку почти невозможно: единственная более-менее заметная разница в толщине листьев - у кок-сагыза они более тонкие.

Ещё одно преимущество этого вида в том, что его корни на 45% состоят из инулина, естественного углеводорода, который можно переводить в этанол. Таким образом, из сырья можно получать и каучук, и инулин.

Вероятно, со временем одуванчиковые плантации станут стратегически важными, по крайней мере, так считают в Конгрессе США, который уже сейчас рассматривает млечный сок этого растения как будущую основу производства резины для нужд обрабатывающей и военной промышленности.


Пока исследователи собирают и сортируют растения вручную (фото Tom Dodge).

На данный момент Штаты на все сто процентов зависят от импорта натурального каучука из Юго-Восточной Азии. А между тем цены на него выросли с 2002 года почти в семь раз, что обходилось государству в среднем в $3,3 миллиарда ежегодно.

Мало того, поставки со временем могут значительно сократиться, так как на себя «тянут одеяло» быстроразвивающиеся Китай и Индия вкупе со странами бывшего СССР, да и всё большая индустриализация Юго-Восточной Азии даёт о себе знать.

Синтетические же каучуки не могут заменить натуральные в большинстве отраслей (80% из более чем миллиона тонн импортируемого растительного сырья расходуется на производство покрышек для автомобилей, самолётов и различной техники).

«Сколько бы химических методов мы ни применили, до сих пор нет никакой возможности создать искусственные заместители, способные „противостоять“ натуральному каучуку», — говорит Уильям Рэвлин (William Ravlin), один из вовлечённых в проект учёных.

Подводя итог, можно сказать: с ужасом ждёт Конгресс 2020 года, когда спрос на растительный каучук превысит предложение на 15%. А чтобы не было страшно, всячески поощряет подобные программы.

По мнению экспертов из Огайо, более эффективным производство станет тогда, когда специально обученные фермеры сядут на свои тракторы и займутся сбором одуванчиков с помощью машин, разработанных для вытаскивания из земли луковиц тюльпанов.

Но не тут-то было! Фермеры забеспокоились. Нет, дело вовсе не в том, что одуванчик (который, по мнению обывателей, является одним из самых распространённых сорняков) очень даже полезен, может быть употреблён как салатная трава или как лекарство.

Фермеры побоялись другого, а именно опасного соседства – ведь их посевы продовольственных культур могут быть вытеснены полями с одуванчиками для каучукового производства.


На первых порах и тестирование сока – ручная работа (фото Tom Dodge).

Что ж это получается? С одной стороны бесконечные кукурузные поля и пруды, заполненные водорослями (это для топливной промышленности), с другой – массивы солнечных батарей (для электроэнергетики), а с третьей — ещё и бескрайние поля сорняков, которые к тому же будут распространять свои семена по округе (эти для заводов по производству резины).

А ведь в мире свирепствует продовольственный кризис!

Учёные фермеров пока никак не успокаивают, и даже, наоборот, заявляют о том, что уже работают над селекцией растений. Так, группа Мэттью Кляйнхенца (Matthew Kleinhenz) из OARDC говорит, что уже отобрала достаточно большое количество семян растений, дающих 15 килограммов каучука с каждых 100 килограммов сухих корней одуванчиков.


Сначала из высушенных корней в ходе нескольких процессов выделяют инулин. Оставшийся материал смалывают в ёмкости с фарфоровыми шариками, которые снимают с корней кожицу. Затем 90-95% каучука экстрагируется с помощью воды (фото PENRA).

На данный момент отрабатывается технология высадки и сбора урожая кок-сагыза (в какие сроки и на каком расстоянии друг от друга будут выращиваться одуванчики). Учёные подыскивают болезне- и засухоустойчивые растения. И это при том что одуванчик, как известно, весьма неприхотлив.

Первые тесты, проведённые в лабораториях, показали, что каучук из кок-сагыза ничем не уступает тому, что получают из гевеи.

Исследователи надеются, что уже через несколько лет первый завод по производству резины из сока одуванчиков выйдет на рабочую мощность в 20 миллионов тонн ежегодно. А к 2015-му количество продаваемого продукта увеличится втрое.